Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001

NMR and NQR studies of superconducting $CeTIn_5$ (T = Co, Rh and Ir)

Y.Kohori¹, Y.Yamato¹, Y.Iwamoto¹, T.Kohara¹, E.D.Bauer², M.B.Maple², J.L.Sarrao³

- ¹ Department of Material Science, Faculty of Science, Himeji Institute of Technology, Ako-gun Hyogo 678-1297, Japan
- Department of Physics and Institute for Pure and Applied Physics, University of California, San Diego, La Jolla, California 92093, USA
- ³ Condensed Matter and Thermal Physics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

We have carried out 115 In and 59 Co nuclear quadrupole resonance (NQR) and nuclear magnetic resonance (NMR) measurements on CeTIn $_5$ (T=Co, Rh and Ir). The temperature T and the pressure P dependence of nuclear spin- lattice relaxation rate $1/T_1$ of 115 In in CeTIn $_5$ indicated that the superconductivity occurred nearby an antiferromagnetic instability. In the superconducting state, $1/T_1$ has no Hebel- Slichter coherence peak just below T_C and a power-law T dependence at very low temperatures, which indicates the existence of line nodes in the superconducting energy gap. The 115 In (Ce-In plane) Knight shift in CeCoIn $_5$ decreases for both parallel and perpendicular directions to tetragonal c- axis below T_C , which shows the spin susceptibility decreases in all directions. These results indicate that CeTIn $_5$ (T = Co, Rh and Ir) exhibit non-s wave even parity (probably d-wave) superconductivity.